
Introduction

Low carbon transformation has become an important 
subject to realize high quality development for China 
nowadays. Its carbon dioxide emissions occupied 
27.3 percent of the world in 2016, which exceeded 

the sum of emissions from US and EU and were 7.65 
times the emissions in Japan [1]. International calls for 
more responsibilities for carbon emissions exert more 
and more pressure on the low-carbon transformation 
process. How to accelerate this process and realize 
absolute emissions reduction are the best choice for 
central government to answer for international calls 
and improve economic development quality. On one 
hand, technical progress is the core driving force to 
realize low-carbon transformation [2]. Low-carbon 
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energy supply, industrial sectors’ production and 
their structure arrangement rely on technical progress 
finally. Thus, how to stimulate technical development 
is a great significant subject to accelerate the low-
carbon transformation process. Such measures as R&D 
funds input, technical outputs and spatial structures, 
etc., should be considered in detail. Especially, green 
technical progress development should be given the 
priority. On the other hand, inadequate and imbalanced 
development problems are apparent in terms of 
technical progress among regions. These have become 
an obstacle to accelerate the transformation process. 
Spatial distribution optimization can save R&D resource 
input, and spillovers among regions can give full paly 
to emissions reduction effects. Since 2000, technical 
progress in China has been developing at high speed. For 
instance, annual growth rate of authorized patent output 
in China was greater than 20 percent during 2001-2016. 
Meanwhile, regional disparities among regions in terms 
of technical development also cannot be neglected. 
Provincial disparity in terms of authorized patent 
per capita among provinces kept more than 20 times 
during the period. In 2003, it peaked 56.6 times. Spatial 
disparity features should be considered in detail during 
technical development arrangements for the central 
government. According to the first geography economics 
laws (Tobler, 1979), there exist close relationships 
among adjacent regions [3]. Spatial autocorrelation is 
also included in policy arrangement. Based on the above 
analysis, spatial clusters and heterogeneity characters 
should be evaluated before considering its effects upon 
carbon dioxide emissions. Therefore, this research is 
carried out from spatial distribution characters among 
provinces in China during the research period and 
then its influences upon carbon dioxide emissions will 
be considered in detail. Suggestions shall be made for 
central governments’ references in terms of identifying 
the prior development provinces and improving spatial 
spillover effects among 30 provinces in order to 
accelerate the whole transformation process in China.

In the literature, technical influences on pollutant 
emissions has become a key subject for researchers 
today. Most literature focuses on technical progress 
evaluation and its transmission mechanism analysis. 
In technical progress evaluation research, data 
envelopment analysis (DEA) and Malmquist index 
methods are applied in order to obtain technical 
progress information. In this framework, economic 
output is regarded as expected output, and carbon 
dioxide emissions are included as the unexpected 
output. Han C. (2018) applied ‘DEA+Malmquist index 
decomposition’ framework to the low-carbon technical 
progress index values and explore its reduction effects 
of industrial sectors [4]. Zhang B. (2017) [5], Xie B. and 
Song Y. (2017) [6], Cheng et al. (2017) [7], Sun X. et al. 
(2016) [8], Jin P. (2017) [9], Ji K. and Qu R. (2012) [10] 
et al. used this framework to evaluate technical trends 
and further analyzed their influential effects in China. 
Besides, some researchers use such statistical indexes as 

R&D funds input, human resources input or technical 
output indexes to reflect technical trends. Zhang C. and 
Zhang Z. (2015) utilized FDI, R&D fund input, human 
capital input and authorized patent indexes to evaluate 
technical progress trends in China [11]. Wei W. and 
Yang F. (2010), Huang J. and Ding G. (2014), Yin J. et 
al. (2015), Zhou H et al. (2016), Zhou Z. et al. (2017),  
Zhao Q.Z. and Yan Q.Y. (2018) employed patent output 
index to evaluate technical trends [12-17]. When 
DEA framework is utilized, evaluation results are 
concluded based on the relative efficiency compared 
with production frontiers, and they are much dependent 
on sample selection. Therefore, results are sensitive 
to abnormal values and have poor stability. To avoid 
the result stability problem, more researchers have 
chosen statistical indicators to reveal technical trends. 
Compared with technical input indicators, technical 
output indicators can supply more exact information. 
Thus, an authorized patent output indicator is selected in 
this research in order to evaluate technical development 
trends among provinces in China.

In terms of technical influence on carbon emissions 
research, the two main directions are mechanism 
and empirical analysis. With respect to influential 
mechanisms, Jaffe (2002) pointed out that technical 
progress may lead to pollutant emissions rising or 
decreasing [18]. Shen M. et al. (2012) divided its 
influence effects into two ways: direct and indirect 
effects [19]. The direct effect was the path of ‘technical 
progress → carbon dioxide emissions’ and it meant 
that technical progress directly inflects emissions. An 
undirected effect was referred to the way ‘technical 
progress → economic growth → carbon dioxide 
emissions’ and technical progress stimulated emissions 
change by economic growth. Technical progress had 
path dependence and depended on its initial technical 
structure. Acemoglu et al. (2009) classified technical 
progress into two types: pollutant and clean technology 
[20]. When pollutant technical progress dominated, 
technical progress pushed pollutant sectors to expand at 
a higher speed and promote carbon dioxide emissions 
ascending. Otherwise, when cleaner technical progress 
dominated technical progress, it stimulates clean 
sectors to produce more goods and edge out pollutant 
goods. At the end, less fossil energy is consumed and 
fewer emissions are produced. Yan Z.M. and Deng 
X.L. (2016) analyzed direct effect and possible indirect 
effects on industrial carbon dioxide emissions, from 
theoretical mechanism and empirical model aspects [21]. 
In summary, there is much uncertainty surrounding 
technical influences on carbon dioxide emissions and it 
depends on transmission path and technology structure 
of the economics. 

Decomposition methods and econometric models 
are used in the influential factor analysis in current 
literature. IDA (index decomposition analysis) and SDA 
(structural decomposition analysis) are the two widely 
used decomposition methods. LMDI (logarithmic 
mean divisia index) is the most popular IDA method, 
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which is widely used in recent energy or emissions 
analysis. Sun N. (2010) used LMDI to analyze the main 
factors that influence manufacturing sectors’ carbon 
emissions in China and pointed out the driving effects 
from technical progress [22]. Liao and Xu (2017) and 
Dong F. et al. (2018) decomposed the driving effects 
in carbon dioxide emissions with SDA framework 
[23-24]. Under decomposition method framework, 
the accidental factor is not taken into consideration 
and conclusions may deviate from reality. In the 
econometric model, accidental factor is included in the 
model as random variable ε. Influential effects can be 
evaluated by parameter estimation results and statistical 
tests. As panel data supply individual and dynamic 
information simultaneously, panel data econometric 
models are widely utilized by many researchers during 
factor analysis. Common panel data econometric 
model and spatial panel data econometric model are 
often constructed to explore technical progress effect 
on carbon emissions. [25-29] applied the panel data 
econometric model to analyze technical progress factor’s 
influence on carbon dioxide emissions. They mainly 
differ in explained variable selection and parameter 
estimation results.

In a summary, current research mainly focuses on 
technical progress trends under DEA framework and 
results have poor stability. A statistical indicator can 
provide precise data information and its results can be 
more stable and referable for implementing low carbon 
incentives. The main contributions of this research are 
as follows. Firstly, authorized patent indicator is chosen 
as the evaluation indicator to reveal technical progress 
information among provinces. Moran’s index (Moran I) 
and Moran scatter diagram (MSD) are used to reveal its 
spatial characteristics. Secondly, the spatial econometric 
model is constructed to analyze its influence on carbon 
dioxide emissions and technical progress is the core 
variable. Results can explain not only its direct effects, 
but also the indirect effects to its neighbors’ emissions. 
Conclusions will provide detailed references for the 
central government to stimulate technical development 
incentive policies and coordinate regional low-carbon 
transformation plans in China.

Material and Methods 

Spatial Character Analysis

Moran I and MSD are the usually used statistical 
methods to analyze the spatial distribution character 
of a sample. Moran I is obtained according to Eq. (1), 
and it varies within the range [-1, 1]. When it is positive, 
it indicates a wholly positive spatial cluster character. 
When it is negative, it shows a negative spatial cluster 
character. When it ranges at zero, it reveals that there 
are no spatial autocorrelations and no clusters in a whole 
among individuals. Its significance test is to examine 
whether it is a significant effect for this variable. When it 

is rejected, it means spatial cluster character is important 
and it should not be neglected from consideration. In 
Eq. (1), W is defined as spatial adjacency matric and Wij 
reveals the spatial adjacency features among the two 
individuals. When they are spatial neighbors, it is 1 and 
otherwise it is given zero. X

–  
 and S2 are the mean and 

variance of indicator X:

     (1)

MSD is utilized to analyze local spatial heterogeneity 
characters by its four quadrants. Four quadrants reveal 
four types and they are ‘H-H’, ‘L-H’, ‘L-L’ and ‘H-L’ 
types, respectively. ‘H-H’ and ‘L-L’ reveal positive 
spatial clusters locally. ‘H-H’ shows both higher 
properties for two neighbors. And if they are of ‘L-L’ 
type, they represent both lower properties. ‘L-H’ and  
‘H-L’ types reveal a locally negative cluster state. 
Of ‘L-H’ type, individuals with lower values are 
spatially adjacent to those with higher values. On the 
above analysis in terms of technical progress, spatial 
heterogeneity character among provinces can be 
concluded. 

Spatial Panel Data Econometric Model

The econometric model is used to explain influences 
with its parameter estimation results and statistical 
test conclusions. Panel data can provide individual and 
timing information simultaneously of the sample. The 
econometric model with panel data is defined as panel 
data econometric model (PDEM) and widely applied 
to factor analysis in current research. It is classified 
into two types: common panel data econometric model 
(CPDEM) and spatial panel data econometric model 
(SPDEM). In CPDEM, individuals are assumed to be 
independent and inter-individual interaction is neglected. 
In SPDEM, spatial adjacency matric (W) is included 
into the model to reveal interactions among individuals. 
SPDEM is further divided into three sub-types: spatial 
lag model (SLM), spatial error model (SEM) and spatial 
durbin model (SDM). In SLM, spatial lag variable  
Wy is introduced into the model. In SEM, Wε is 
included into the model as an explanatory variable. Wy 
and Wε are both introduced into the model in SDM. 
SDM is usually constructed when spatial spillover  
effect is considered. Statistical test results are helpful  
for confirming whether it is converted into SLM or 
SEM. 

A series of statistical tests should be carried out to 
obtain reliable parameter estimation results and obtain 
analysis conclusions. They are mainly panel unit root 
tests, panel co-integration tests, models form selection 
tests, significance tests and robust tests, etc. 

Firstly, panel unit root tests and co-integration 
tests are implemented before the econometric model 
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is constructed. They are intent on examining stable, 
long-term equilibrium relationship existence among 
variables. Panel unit root tests are to explore the 
stability features for variables and mainly conclude LLC, 
Fisher ADF and Fisher PP tests. The null hypothesis 
is that there is a general unit root in LLC test and it 
is an effective unit root in the other two tests. Only 
when variables have the same order stable property can 
panel co-integration tests be implemented to examine 
whether there is a long-term equilibrium relationship 
among variables. Otherwise, false regression results 
may be obtained. Kao test is used in the co-integration 
test. Its null hypothesis assumes that there is no  
long-term co-integration relationship among variables. 
If the null hypothesis is refused, stable long-term 
equilibrium relationships among variables exist and  
the econometric model should be constructed.

 The second type of statistical test is about fixed 
effect model forms of selection tests. There are four 
fixed effect model forms and they are models with 
fixed effects: mixed fixed, individual fixed, time fixed 
and dual fixed effect. Statistical tests mainly conclude 
R square (R2), log-likelihood test (Log-L), and Lagrange 
multiplier (LM-lag, LM-error, robust LM-lag and 
robust LM-error). The third type of statistical test is to 
examine how SDM should be converted into SLM or 
SEM. The conclusion is based onstatistics, Wald test 
(Wald_spatial_lag, Wald_spatial_error) and likelihood 
ratio test (LR, LR_spatial_ lag and LR_spatial_error) 
results. 

Finally, robust tests of parameter estimation results 
in the model should be implemented to confirm that 
results are robust by variables or data change. In this 
section, two substitute variables for the core explanatory 
variable are chosen to explore out the robustness 
results. Besides, the middle part of the research period  
(2005-2012) is chosen to estimate parameters and 
examine the robust results of the model. 

 All variables are converted into the logarithm forms 
in order to eliminate the heteroscedasticity phenomena 
among variables in the model and they are represented 
by ln(∙).

Results and Discussion

Spatial Distribution Characters 
of Technical Progress

In this section, an authorized patent indicator is 
chosen to reveal their spatial characters and dynamic 
trends during 2001-2016. Moran indexes and MSDs  
are obtained during the period and they are shown in 
Table 1 and Fig. 1.

From Table 1, Moran Index turned from an 
insignificant indicator to significant one and the 
critical year was 2007. Before 2007, it was not wholly 
significant and it revealed that spatial effect was not 
an important factor in terms of technical development. 
During 2007-2016, spatial effect among provinces was 
an important influential factor and should be considered 
when technical policies were implemented. Moreover, 
Moran index was kept positive during the whole period. 
Positive spillovers dominated among the provinces in 
terms of tehcincal progress. It kept an apparently rising 
trend and increased by 28.89 percent totally during 
2007-2016. In 2016, it was 0.2311 and still located at a 
lower level. In summary, technical progress represents 
a positive, lower-level spatial cluster character among  
30 provinces. 

Fig. 1(a-b) are the MSDs in 2011 and 2016, 
respectively. With comparison, spatial heterogeneity 
trends are analyzed. In Fig. 1b), 6 provinces are 
located in the first quadrant and 17 provinces in the 
third quadrant. They occupied 20% and 56.67% of  
30 provinces, respectively. ‘L-L’ is the dominant  
spatial cluster type and reveals that many provinces 
with lower technical output form spatial clusters in 
China. It is not suitable for technical spillovers among 
them. ‘L-H’ and ‘H-L’ types occupied 13.33% and 
10%, respectively. Compared with MSD in 2011, a 
few provinces took spatial transition during 2011-2016.  
For instance, Fujian Province is located in the  
secondary quadrant in 2011 and changed to the first 
quadrant in 2016. Sichuan Province transferred from  
the third to fourth quadrant, which indicates that 

Table 1. Moran I values of technical progress during 2001-2016 (α = 5%).

Year Moran I p-value Sig. test Year Moran I p-value Sig. test

2001 0.0664 0.1470 No 2009 0.2442 0.0240 Yes

2002 0.0829 0.0990 No 2010 0.2530 0.0230 Yes

2003 0.1612 0.1340 No 2011 0.2747 0.0150 Yes

2004 0.0861 0.1130 No 2012 0.2640 0.0130 Yes

2005 0.0966 0.0930 No 2013 0.2481 0.0190 Yes

2006 0.1367 0.0700 No 2014 0.2376 0.0220 Yes

2007 0.1793 0.0440 Yes 2015 0.2352 0.0180 Yes

2008 0.1853 0.0480 Yes 2016 0.2311 0.0200 Yes
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technical progress effects in the upper reaches of the 
Yangtze River Economic Delta has gradually formed 
and plays a role, taking Sichuan as the center. In MSD 
of 2016, the first quadrant includes Jiangsu, Zhejiang, 

Anhui, Fujian, Shanghai and Shandong provinces. They 
are mainly located in the Yangtze River Delta and only 
Shandong surrounds the Beijing-Tianjin-Hebei region in 
China. The Yangtze River Delta has become a technical 
output center. 

Econometric Model Estimation Results 

Variables and Descriptions

In this research, carbon dioxide emission is chosen 
as the explained variable of the model to reveal the 
low carbon transformation process in China. Provincial 
emission is obtained based on Intergovernmental Panel 
on Climate Change (IPCC), and carbon emission 
coefficients of energy types are from its annual report 
(IPCC 2006) [30]. Eight energy types are considered to 
estimate carbon dioxide emissions: coal, coke, crude oil, 
gasoline, kerosene, diesel oil, fuel oil and natural gas 
(Table 2). 

In Table 2, seven variables are introduced into 
the econometric model as the explanatory variables. 
Among them, authorized patent scale is regarded as the 
core variable to reveal technical influences on carbon 
dioxide emissions in the model. Data are from the 
China Statistical Yearbook on Science and Technology 
[31]. GDP is concluded in the model to reveal 
economic growth influence on emissions. To avoid 
price fluctuations, it is converted into real values at the 
fixed price in the year 2000. Population scale is also  
chosen into the model. It is a timing indicator and 
population scale of year t is the average value at the 
end of the year t and t–1. Industrial structure and 
energy consumption structure are both concluded into 
the model to indicate structural adjustment influences 
during the research period. Industrial value-added 
proportion in GDP is used to reveal economic structure 
adjustment. Coal proportion in energy consumption 
is used to reveal energy structure state in the model. 
Foreign spillovers are referred to the technologies 
accompanied with foreign investment and trades. 
Foreign direct investment (FDI) is introduced into 
the model as an explanatory variable. Technology 

Fig. 1. MSD in terms of authorized patent in a) 2011, b) 2016.

Table 2. Variable definitions and descriptive statistics.

Variable Definition Unit Mean Std. Dev. Min Max

CO2 Carbon dioxide emissions 104 tons 32389 24981 1164 147193

GDP Gross domestic production 108 RMB 9469 9221 292 50976

Pop Population scale 104 persons 4380 2635 521 10924

IS Economic structure Percent 46 8 19 62

ES Energy consumption structure Percent 68 17 10 98

Pat Granted patent scale Piece 1353 42261 70 269944

FDI Foreign direct investment 104 dollars 519975 659586 1495 3575956

Tim Imported technology value 104 dollars 75347 146096 0.02 971292
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purchase scale is also an explanatory variable to reveal  
technology import investment scale of provinces.  
Data are mainly from the China Statistical Yearbook 
2017 and China Energy Statistical Yearbook 2017  
[32-33].

Stability and Co-Integration Test Results

Table 3 is stability test results for all eight variables 
in this model. dln(∙) is the first-order difference sequence 
of variables. According to LLC, Fisher ADF and Fisher 
PP tests results, eight variables are not stable in their 
logarithm form at 10% confidence level. The first-order 
difference sequences for variables have turned into  
stable state and they are in the same order in stable  
tests. Thus, the co-integration test can be implemented 
to decide whether the econometric model should be 
constructed in this section. Table 4 is the Kao test 
results for co-integration test for all variables. Based 
on ADF statistic values in the Kao test, its p-value is 
0.0005 and null hypothesis should be refused. There 
exist stable long-term equilibrium relationships among 
eight variables, and the econometric model can be 
constructed. Thus the economic model is suitable to 
estimate factor analysis on carbon dioxide emissions  
and the basis model is as follows in Eq. (2). ε is 
a random variable to explain the accidental variable’s 
influence:

 

(2)

Statistical Tests for Model form Selection

Table 5 is the result of the fixed-effect model form 
selection for panel data econometric model. Main 
statistics are R2, Log-L, LM-lag, LM-error, robust 
LM-lag and robust LM-error in this section. Based on  
R2 statistic values of models (1)-(4), R2 in models (2) and 
(4) are 0.9731 and 0.9763, which are higher than those in 
models (1) and (3). Test results indicate that models (2) 
and (4) have more goodness of fit than that in the other 
two. During Log-L results in Table 5, values in models 
(2) and (4) are more than the others. It also proves that 
models (2) and (4) are a better choice among the four 
forms. Among the four LM test results, three statistics 
of model (2) are significant, while the four LM statistics 
of model (4) are not significant. Thus, model (2) should 
be chosen as the common panel data econometric model.

With Table 6 and Table 7 test results, spatial effects 
characters are implemented into the common panel 
data model and converted into spatial panel data model. 
Table 6 is the Moran index significance test results for 
carbon dioxide emissions during 2001-2016. It kept 
‘rising→peak→decline’ trends and was a significant 
variable at 1% confidence level. Spatial spillover effects 
should not be ignored from influential factors, and the 
spatial econometric model should be constructed in this 
section. With results in Table 7, R2 and Log-L statistical 
values are more than results of model (2) in Table 5, 
and model fitness degree becomes more. With results 
in Wald and LR tests, null hypotheses are all rejected. 
These indicate that SDM cannot be converted into 
SLM or SEM in this research, and its estimation results 
have better statistical features. In summary, SDM 
under individual fixed effect form is the most proper 
economic model in order to analyze influential effects 
upon emissions in this research. The SDM with seven 
explanatory variables are as follows in Eq. (3):

Table 3. Stability test results of the eight variables.

Variables
LLC Test Fisher-ADF Test Fisher-PP Test

Conclusions
ln(∙) d ln(∙) ln(∙) d ln(∙) ln(∙) d ln(∙)

lnCO2 1.044 -11.927*** 11.748*** 195.105*** 9.482 248.171*** I(1)

lnGDP 9.677 -5.514*** 9.177 76.155* 7.471 189.089*** I(1)

lnPop -4.661*** -12.948*** 60.131 215.031*** 78.995** 364.279*** I(1)

lnFDI 0.147 -16.770*** 65.607 178.364*** 78.036* 230.287*** I(1)

lnPat 2.702 -13.650*** 10.456 175.925*** 11.453 272.132*** I(1)

lnTim 3.652 -16.877*** 17.069 301.576*** 14.976 432.259*** I(1)

lnES -1.119 -14.210*** 27.657 220.108*** 25.404 302.789*** I(1)

lnIS -0.6302 -14.357*** 25.659 173.134*** 22.808 249.595*** I(1)

Note: ***, ** and * represent α = 1%, 5% and 10%.

Table 4. Panel data co-integration test results.

Test method Statistic Statistic value p-value

Kao test ADF -3.3072 0.0005
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(3)

Parameter Estimation Results 
and Analysis

Parameters of SDM in Eq. (3) are estimated with 
maximum likelihood estimation (MLE) method [34]. 
With the aid of Matric Laboratory (Matlab) software, 
parameter estimation results are obtained and shown in 
Table 8. In comparison, estimation results in CPDEM 
are also shown in Table 8. There are significant 
differences among the two model estimation results. 

In SDM, βi indicates the regional effect upon its own 
carbon dioxide emissions and δi reveals its impacts on 
its neighbors’ carbon dioxide emissions. Lesage and 
Pace (2009) proposed a partial differential method to 
estimate the indirect effects and total effects of each 
factor [35] and they are shown in Table 9. There is little 
difference between the direct effect results under partial 
differential method and the parameter estimations in 
SDM. The indirect effects for all variables in SDM 
are apparently different from estimation results with 
Lesage’s method. Total effect of a variable is the sum of 
direct and indirect effects and they reveal the influential 

effect of an explanatory variable in a whole. Influential 
effect analysis is mainly based on them.

As the core explanatory variable, technical progress 
influences carbon dioxide emissions in a complex way. 
Firstly, it influences its own carbon dioxide emissions 
in a negative direction. According to Table 8, its direct 
effect is -0.0414. When technical output increased by 
one percent, it leads to 0.0414 percentage decline in 
carbon dioxide emissions of its own. Compared with the 
estimator in CPDEM, it is -0.0789. The absolute value 
of direct effect is lower than the estimator in CPDEM. 
The influential effect of technical progress upon its 
carbon dioxide emissions is overestimated under 
CPDEM framework. In terms of estimator significance 
test, it is not significant even at a confidence level of 
10% in Table 8. In SDM estimation results, -0.0430 
is significant at confidence level 10%. Its estimation 
result -0.0789 in CPDEM is a significant estimator at 
confidence level 1%. In summary, technical progress 
of a province leads to a negative effect on its own 
emissions in a weak way. This conclusion revises the 
former conclusions under the CPDEM framework. 
When we neglect spatial spillovers among provinces, its 
effect is overestimated. Meanwhile, the technical output 
structure is weakly dominated by clean technical output. 
The R&D investment in green technical progress field 
should be continuously expanded in order to exert its 

Table 5. Statistical test results for fixed-effect form selection in panel data model.

Test statistics Model (1) Model (2) Model (3) Model (4)

R2 0.7819 0.9731 0.7867 0.9763

Log-L -227.9276 274.5369 -222.6154 305.0197

LM-lag 0.2467 1.2630 29.0815*** 0.2425

Robust LM-lag 0.9030 6.1683*** 1.0521 1.8681

LM-error 44.2480*** 18.0501*** 44.6008*** 1.1433

robust LM-error 44.9043*** 22.9555*** 16.5713*** 2.7689

Note: Model (1)-(4) represents mixed, individual, time and dual fixed effect model forms, respectively; ***, ** and * represent 
confidence level α = 1%, 5% and 10%.

Table 6. Moran I significance test of provincial carbon dioxide emissions (α = 5%).

Year Moran I p-value Significance Test Year Moran I p-value Significance Test

2001 0.2618 0.015 Yes 2009 0.2849 0.007 Yes

2002 0.2556 0.013 Yes 2010 0.2856 0.006 Yes

2003 0.2409 0.024 Yes 2011 0.2872 0.005 Yes

2004 0.2784 0.009 Yes 2012 0.2712 0.010 Yes

2005 0.3050 0.005 Yes 2013 0.2656 0.007 Yes

2006 0.2995 0.005 Yes 2014 0.2544 0.015 Yes

2007 0.2946 0.008 Yes 2015 0.2555 0.013 Yes

2008 0.3044 0.005 Yes 2016 0.2404 0.015 Yes
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emission reduction driving effects in the future. The 
inadequacy feature of technical development is apparent 
in the current stage. Especially clean technical progress 
development is the most potential driving factor to 
accelerate low carbon transformation in China.

Secondly, the parameter estimator of is 0.0426 in 
Table 8 is not significant even at confidence level 10%. 
This indicates that technical output increases by one 
percent, leading to a 0.0426% rise in its neighbor’s 
carbon dioxide emissions. They vary in the same 
direction. Based on Table 8, the total indirect effect is 
0.0406 and is not significant, either. The total effect of 
technical progress is -0.0008 and is close to zero. These 
results indicate that technical progress influences other 
provinces’ emissions by technical progress spillovers. 
Though technical progress spillovers among provinces 
are significant, their indirect effects on emissions are 

not significant. The whole effect of technical progress 
on emissions in China is almost zero. This proves that 
regional technical progress leads not only to declining 
emissions of its own and others in this stage of China. 

From analysis in Section 1, the technology output  
of most regions in China has developed at a higher 
speed during the research period. Why did technical 
progress not bring about emissions reduction?  
The answer lies in its spatial features. Based on 
MSD of provincial authorized patent output, it is a  
lower-level, positive spatial distribution state. Although 
it is significant, most provinces are located in the  
‘L-L’ type of the MSD. These indicate that most 
provinces of lower technical progress outputs are spatial 
clusters, and this spatial distribution state is not in 
favor of technical progress spillover among provinces. 
There are only a few southeastern provinces which are 

Table 7. Statistical tests results of SDM.

Test statistics Statistical value p-value Conclusions

R2 0.9821 — Good

Log-L 367.32 — Apparent improved

Wald_spatial_lag 220.85 0.000 Reject H0

Wald_spatil_error 116.70 0.000 Reject H0

LR_spatial_lag 185.26 0.000 Reject H0

LR_spatial_error 157.45 0.000 Reject H0

Table 8. Parameter estimation results of SDM and CPDEM (individual fixed effect form).

Explanatory variables
SDM CPDEM

Parameters t-statistics p-value Parameters t-statistics p-value

Core variables
β1 -0.0430* -1.6804 0.0929 -0.0789*** -3.2666 0.0012

δ1 0.0426 1.2579 0.2084 —— —— ——

Controlled 
variables

β2 1.3358*** 19.5526 0.0000 0.8231*** 15.7874 0.0000

β3 -0.2946* -1 .7013 0.0889 -0.0529* -0.3328 0.7385

β4 0.2710*** 3.5033 0.0005 0.7418*** 9.2244 0.0000

β5 0.0914* 1.8603 0.0628 0.0926* 1.7406 0.0824

β6 -0.0079 -0.6567 0.5114 -0.0230 -1.6289 0.1040

β7 -0.0021 -0.4466 0.6551 0.0139* 1.7953 0.0733

δ2 -0.6996*** -6.9355 0.0000

δ3 0.6637* 1.8931 0.0583

δ4 0.7760*** 5.3708 0.0000

δ5 0.4467*** 3.5453 0.0004

δ6 -0.1270*** -5.1566 0.0000

δ7 -0.0085 -1.0064 0.3142

λ 0.2880*** 5.1205 0.0000

Note: ***, ** and * represent confidence level α = 1%, 5% and 10%.
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divided into ‘L-L’ type in terms of technical progress. 
In 2016, there are 4 and 3 provinces which belong to the  
‘L-H’ and ‘H-L’ types. These two types are beneficial 
to optimize spatial distribution with respect to  
technical progress. During 2001-2016, the quantity 
of the two types is rising and they are in the minority 
among the provinces in China. The spatial distribution  
state restricts its reduction effects on carbon dioxide 
emissions by technology diffusion mechanism in 
China. According to technical progress research by 
Aghion (1992) [36], technical progress is classified 
into two categories: dirty and clean technical progress. 
Dirty technical progress points to new technologies 
characterized by pollutant emissions rising of 
some industrial production sectors in the economy. 
Clean technical progress refers to some certain new 
technologies and they will produce fewer pollutant 
emissions. When technology output of an economic 
entity is dominated by clean technical progress, 
technical progress leads to fewer emissions. Otherwise, 
dirty technology progress will cause emissions to rise in 
the economic entity. 

In summary, the clean character of technical progress 
is appearing up and it is still a weak factor for reducing 
carbon emissions among provinces at this stage. 
Technical progress remains unstable and its influential 
elasticity coefficient is about -0.0414. The indirect effect 
is approximately 0.0406 through spatial spillovers from 
other provinces and it is a weak, positive factor in terms 
of carbon dioxide emissions. To sum up, total effects 
on carbon dioxide emissions from technical progress is 
almost close to zero. This means that technical progress 
cannot exert significant effects upon carbon emissions 
whether of its own or of its neighboring provinces. The 
inadequacy and unbalanced development characters in 
terms of technological progress are becoming more and 
more obvious in China. In the future, how to promote 
technical progress to develop at a higher speed and to 
optimize its spatial distribution should be the most 
potential factor to accelerate low-carbon transformation 
in China. 

Among the other explained variables, regional 
economic growth has significant influences on whether 
on its own carbon emissions or on others’ emissions. 
Its direct effect is 1.3141 and indirect effect is -0.4185. 
It is underestimated in the CPDEM framework. 
Economic development of a province drives its carbon 
dioxide emissions in the same direction while it 
drives other emissions in a negative direction. In total, 
economic growth leads to rising emissions significantly. 
Meanwhile, spatial distribution optimization in terms 
of economic development is beneficial for China to 
accelerate its low carbon emission transformation 
process. At the same time, economic growth quality is 
being improved during the research period.

Based on estimation results in Table 9, industrial 
structure has a positive and significant impact on 
carbon dioxide emissions. Total effect is 1.4833 and 
is much higher than the direct effect 0.3323. For 
every percentage down in industrial structure, 0.3323 
percentages of carbon emissions result from it. In 
addition, it plays more reduction effects upon their 
neighbors’ emissions by economic structure adjustment. 
It shall be an important potential direction to reduce 
carbon emissions.

In Table 9, energy consumption type structure is 
a significant explanatory variable at confidence level 
10%. Meanwhile, it also impacts a more indirect effect 
on their neighbors through spatial spillovers among 
provinces. They vary in the same directions. Reducing 
coal consumption in China can greatly accelerate 
carbon dioxide emissions downward. How to stimulate 
cleaner energy consumption is a good choice whether in 
goods production or in life. To accelerate clean energy 
technology development is essential to realizing energy 
consumption transformation. 

For population scale variable, its indirect effect is 
a significant estimator in Table 9. The direct and total 
effects are not significant. The population growth 
doesn’t lead to carbon emissions rising apparently, while 
population mobility among provinces maybe stimulates 
carbon dioxide emissions of neighbors. Foreign direct 

Table 9. Direct, indirect and total effects of explanatory variables. 

Explanatory variables
Direct effects Indirect effects Total effects

Estimator t-statistics Estimator t-statistics Estimator t-statistics

lnPat -0.0414 -1.6363 0.0406 1.0230 -0.0008 -0.0194

lnGDP 1.3141*** 19.6749 -0.4185*** -3.8768 0.8956*** 9.2988

lnPop -0.2512 -1.4919 0.7717* 1.7821 0.5204 1.2810

lnIS 0.3323*** 4.4145 1.1510*** 6.6040 1.4833*** 7.9708

lnES 0.1230** 2.4201 0.6337*** 3.6286 0.7567*** 3.7342

lnFDI -0.0165 -1.3267 -0.1735*** -4.8070 -0.1900*** -4.5583

lnTim -0.0030 -0.6106 -0.0129 -1.1112 -0.0159 -1.1318

Note: ***, ** and * represent confidence level α = 1%, 5% and 10%.
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investment (FDI) leads to indirect and total effects upon 
carbon emissions significantly. The effects of FDI are 
negative and FDI influences carbon dioxide emissions 
in a negative direction. Pollution heaven phenomenon 
does not happen in China during 2001-2016. Conversely, 
FDI relieves environmental pressure by technological 
progress spillovers from other countries. 

Robust Tests of Model Results

To test parameter estimation results robustness,  
three robust tests were implemented in this section. 
And the results are presented in Table 10. Tests 1 and 
2 are two substitute variables for the core explanatory 
variable chosen to explore results robustness. They 
are domestic application for patent received indicator  
for provinces and invention granted by regions during 
2001-2016. Test 3 is chosen for the middle part of the 
research period (2005-2012) and all parameters are 
estimated. Based on test results, parameter estimators  
of core variables are insignificant at 10% confidence 
level in the three tests and accord with the above 
conclusion in Table 9. Its spatial lag coefficients are also 
insignificant at 10% confidence level. Technical progress 
doesn’t play a significant role in carbon emissions 
for provinces in China. For the other six explanatory 
variables, significance tests keep in accordance with 
that in SDM. Moreover, signs of parameters in the 
three tests are in the same with that in SDM. Upon 
the above analysis, parameters in SDM are robust and 
the corresponding analysis is reliable to convert into 
conclusions.

Conclusions and Implications

Main Conclusions of this Research

Based on the above empirical analysis, the main 
conclusions are as follows:

Firstly, parameters estimation results under SDM 
have revised original results under the CPDEM 
framework. They can reflect the influential effects of 
technical progress on carbon dioxide emissions in China 
more accurately. Based upon Moran I significance 
test results of carbon dioxide emissions among 30 
provinces, they represent significant, lower positive 
distribution states during 2001-2016. Spatial effects 
should be introduced into CPDEM, and SPDEM is a 
better choice to analyze its influential factors of carbon 
dioxide emissions. From statistical tests, SDM cannot 
be converted into SLM or SEM. Parameter estimation 
results show good statistical property and are more 
suitable to analyze carbon dioxide emissions factors 
in this research. According to estimation results, the 
direct effect of technical progress is -0.0414 and is lower 
than that in CPDEM (0.0789). Technical progress is a 
negative driving force to influence provincial carbon 
dioxide emissions. Its indirect effect is 0.0406 and is 
not significant. The total effect of technical progress  
on emissions is -0.0008 and much closer to zero. 
Technical progress didn’t play a significant role in 
driving the low carbon dioxide transformation process 
during 2001-2016. 

Secondly, inadequate and imbalanced development 
in terms of technical progress is a barrier to promote  

Explanatory variables
Robust test 1 Robust test 2 Robust test 3

Parameters p-value Parameters p-value Parameters p-value

Core variables
β1 -0.0028 0.9009 0.0220 0.2575 -0.0140 0.6128

δ1 0.0457 0.1601 0.0089 0.7420 0.0083 0.8376

Controlled 
variables

β2 1.2743*** 0.0000 1.2211*** 0.0000 1.3811*** 0.0000

β3 0.2195 0.2057 -0.1527 0.3458 -0.2705 0.2752

β4 0.2903*** 0.0002 0.3107*** 0.0001 0.0476 0.6789

β5 0.0982** 0.0464 0.1097** 0.0293 -0.2123** 0.0109

β6 -0.0090 0.4559 -0.0076 0.5312 -0.0021 0.8999

β7 -0.0016 0.7262 -0.0006 0.8980 -0.0034 0.6340

δ2 -0.7205*** 0.0000 -0.6566*** 0.0000 0.6185*** 0.0001

δ3 0.5847* 0.0937 0.4568 0.1683 0.1637 0.7614

δ4 0.7867*** 0.0000 0.7202*** 0.0000 0.1311*** 0.0015

δ5 0.4742*** 0.0002 0.4778*** 0.0002 0.5057** 0.0361

δ6 -0.1240*** 0.0000 -0.1185*** 0.0000 -0.1328*** 0.0000

δ7 -0.0078 0.3481 -0.0070 0.4029 -0.0352** 0.0210

λ 0.2860*** 0.0000 0.2740*** 0.0000 0.1520* 0.0785

Table 10. Robust test results of SDM.
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its carbon emission reduction effects at this stage. How 
to develop technical progress among provinces is the 
most potential force to realize low carbon transformation 
targets in the future. On one hand, technical progress has 
a negative impact on its own carbon dioxide emissions. 
As it is lower and insignificant, inadequate development 
of technical progress is much more apparent among 
regions in China. Especially green technical progress 
development should be given increasing effort in the 
future. Although technical progress has significant 
spatial spillovers among provinces, it still plays a weak 
positive role on neighbors’ carbon dioxide emissions 
in the research period. The spatial distribution state is 
lower, positive ‘L-L’ type and is maybe the cause of 
hampering technical spillover effects. This mechanism 
is not beneficial for provinces to spatial spillovers 
among the low carbon transformation process. 

Policy Recommendations

Firstly, it is an important step to energetically 
accelerate cleaner technical progress in order to 
strengthen its reduction effects on carbon dioxide 
emissions. Especially low carbon technology should 
be given more and more effort for stimulating its 
development in the future. Only by this way does 
technical progress convert it into a more significant factor 
to push the transformation process in China. Pollution 
technologies characterized by high energy consumption 
and high pollutant emissions should be strictly 
controlled from the whole process. This should be the 
long-term technical development strategy in China. In 
order to promote low-carbon technology development, 
three aspects should be paid more focus. They are 
divided into types and are no carbon technologies, 
carbon reduction technologies and de-carbonation 
technologies. No carbon emission technology intends to 
control carbon emissions from the source. Clean energy 
types emitting zero emissions and replacing fossil 
energies with clean energy types is the best choice for 
low-carbon transformation. Solar, wind or geothermal 
energies are good examples for developing technologies. 
Carbon reduction technologies are a kind of process 
control technology. This kind of technology is intended 
to improve efficiency and lower emissions during goods 
production and consumption. Technologies as integrated 
gasification combined cycle (IGCC), combined heat and 
power (CHP), and purification catalyst technologies for 
volatile organic compounds (VOC) are the types of 
technologies in power generation and petroleum sectors. 
De-carbonation technology is a kind of technology to 
capture, store or recycle carbon dioxide. Carbon Capture 
and Storge (CCS) is a good example of this type. For 
these technologies, R&D fund input, technology output 
and transformation should be given more incentive 
policies to stimulate them to develop wholly.

Secondly, spatial distribution optimization of 
technical progress should be considered and given 
more focus on when technical development policies 

are arranged. By this way, cleaner technical spillovers 
among provinces will accelerate emission reduction 
effect transmissions. In the end, it will save R&D funds 
input and accelerate the whole low carbon transformation 
process in China. In the current stage, this technical 
progress distribution state is dominated by ‘L-L’ spatial 
cluster mode, which is not suitable for provinces to 
have technical spillovers among them. Provinces of 
‘H-H’ type are mainly located in the Yangtze River 
Delta region of China and they are Shanghai, Zhejiang 
and Jiangsu provinces. These provinces are the most 
developed economic region in China and are rich in 
R&D resources. This region also develops quickly with 
respect to regional coordinated development. As the 
preferential development regions in regional coordinated 
development, although such regions as Yangtze River 
Delta, Pearl River Delta and Beijing-Tianjin-Hebei have 
some technology agglomeration, they haven’t formed 
high-level technical clusters and related industrial sector 
clusters. Spatial spillovers in clean technology fields do 
not radiate well into their outside regions. As the central 
nodes of technical progress transmission network in 
China, more R&D resources and incentive policies 
should be given to these regions and more resources 
should be input into clean technical progress research 
of the regions. More incentive policies are made to 
stimulate technology transmission among regions and 
these will enlarge technical spillover effects during the 
low-carbon transformation process. 
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